direct product, non-abelian, soluble
Aliases: C22×SL2(𝔽3), C23.6A4, Q8⋊(C2×C6), (C2×Q8)⋊2C6, (C22×Q8)⋊1C3, C2.3(C22×A4), C22.8(C2×A4), SmallGroup(96,198)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — Q8 — SL2(𝔽3) — C2×SL2(𝔽3) — C22×SL2(𝔽3) |
Q8 — C22×SL2(𝔽3) |
Generators and relations for C22×SL2(𝔽3)
G = < a,b,c,d,e | a2=b2=c4=e3=1, d2=c2, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=c-1, ece-1=d, ede-1=cd >
Subgroups: 147 in 61 conjugacy classes, 26 normal (7 characteristic)
C1, C2, C2, C3, C4, C22, C6, C2×C4, Q8, Q8, C23, C2×C6, C22×C4, C2×Q8, C2×Q8, SL2(𝔽3), C22×C6, C22×Q8, C2×SL2(𝔽3), C22×SL2(𝔽3)
Quotients: C1, C2, C3, C22, C6, A4, C2×C6, SL2(𝔽3), C2×A4, C2×SL2(𝔽3), C22×A4, C22×SL2(𝔽3)
Character table of C22×SL2(𝔽3)
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 6N | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 6 | 6 | 6 | 6 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | ζ3 | ζ32 | 1 | -1 | 1 | -1 | ζ32 | ζ65 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | ζ32 | ζ6 | ζ6 | ζ3 | ζ3 | ζ32 | ζ3 | linear of order 6 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | -1 | 1 | 1 | -1 | ζ65 | ζ6 | ζ6 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ65 | ζ65 | ζ6 | ζ6 | ζ65 | ζ32 | linear of order 6 |
ρ7 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | ζ32 | ζ3 | 1 | -1 | 1 | -1 | ζ3 | ζ6 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | ζ3 | ζ65 | ζ65 | ζ32 | ζ32 | ζ3 | ζ32 | linear of order 6 |
ρ8 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | ζ3 | ζ32 | -1 | -1 | 1 | 1 | ζ6 | ζ3 | ζ3 | ζ65 | ζ65 | ζ6 | ζ6 | ζ32 | ζ32 | ζ32 | ζ65 | ζ65 | ζ6 | ζ3 | linear of order 6 |
ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | linear of order 3 |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | linear of order 3 |
ρ11 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | ζ32 | ζ3 | -1 | -1 | 1 | 1 | ζ65 | ζ32 | ζ32 | ζ6 | ζ6 | ζ65 | ζ65 | ζ3 | ζ3 | ζ3 | ζ6 | ζ6 | ζ65 | ζ32 | linear of order 6 |
ρ12 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | -1 | 1 | 1 | -1 | ζ6 | ζ65 | ζ65 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ6 | ζ6 | ζ65 | ζ65 | ζ6 | ζ3 | linear of order 6 |
ρ13 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | symplectic lifted from SL2(𝔽3), Schur index 2 |
ρ14 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | symplectic lifted from SL2(𝔽3), Schur index 2 |
ρ15 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | symplectic lifted from SL2(𝔽3), Schur index 2 |
ρ16 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | symplectic lifted from SL2(𝔽3), Schur index 2 |
ρ17 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | ζ3 | ζ6 | ζ32 | ζ6 | ζ32 | ζ65 | ζ3 | ζ3 | ζ65 | ζ3 | ζ6 | ζ32 | ζ65 | ζ32 | complex lifted from SL2(𝔽3) |
ρ18 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | ζ3 | ζ3 | ζ65 | ζ32 | ζ6 | ζ32 | ζ6 | ζ32 | ζ3 | ζ65 | ζ32 | ζ3 | complex lifted from SL2(𝔽3) |
ρ19 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | ζ65 | ζ32 | ζ6 | ζ6 | ζ32 | ζ65 | ζ3 | ζ3 | ζ3 | ζ65 | ζ32 | ζ6 | ζ3 | ζ32 | complex lifted from SL2(𝔽3) |
ρ20 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | ζ32 | ζ65 | ζ3 | ζ65 | ζ3 | ζ6 | ζ32 | ζ32 | ζ6 | ζ32 | ζ65 | ζ3 | ζ6 | ζ3 | complex lifted from SL2(𝔽3) |
ρ21 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | ζ32 | ζ32 | ζ6 | ζ3 | ζ65 | ζ3 | ζ65 | ζ3 | ζ32 | ζ6 | ζ3 | ζ32 | complex lifted from SL2(𝔽3) |
ρ22 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | ζ32 | ζ3 | ζ65 | ζ3 | ζ65 | ζ32 | ζ6 | ζ32 | ζ32 | ζ6 | ζ65 | ζ3 | ζ6 | ζ3 | complex lifted from SL2(𝔽3) |
ρ23 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | ζ3 | ζ32 | ζ6 | ζ32 | ζ6 | ζ3 | ζ65 | ζ3 | ζ3 | ζ65 | ζ6 | ζ32 | ζ65 | ζ32 | complex lifted from SL2(𝔽3) |
ρ24 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | ζ6 | ζ3 | ζ65 | ζ65 | ζ3 | ζ6 | ζ32 | ζ32 | ζ32 | ζ6 | ζ3 | ζ65 | ζ32 | ζ3 | complex lifted from SL2(𝔽3) |
ρ25 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 0 | 0 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ26 | 3 | -3 | -3 | -3 | 3 | -3 | 3 | 3 | 0 | 0 | -1 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ27 | 3 | 3 | -3 | -3 | 3 | 3 | -3 | -3 | 0 | 0 | 1 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ28 | 3 | -3 | 3 | 3 | 3 | -3 | -3 | -3 | 0 | 0 | 1 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
(1 19)(2 20)(3 17)(4 18)(5 23)(6 24)(7 21)(8 22)(9 27)(10 28)(11 25)(12 26)(13 31)(14 32)(15 29)(16 30)
(1 11)(2 12)(3 9)(4 10)(5 15)(6 16)(7 13)(8 14)(17 27)(18 28)(19 25)(20 26)(21 31)(22 32)(23 29)(24 30)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 7 3 5)(2 6 4 8)(9 15 11 13)(10 14 12 16)(17 23 19 21)(18 22 20 24)(25 31 27 29)(26 30 28 32)
(2 6 7)(4 8 5)(10 14 15)(12 16 13)(18 22 23)(20 24 21)(26 30 31)(28 32 29)
G:=sub<Sym(32)| (1,19)(2,20)(3,17)(4,18)(5,23)(6,24)(7,21)(8,22)(9,27)(10,28)(11,25)(12,26)(13,31)(14,32)(15,29)(16,30), (1,11)(2,12)(3,9)(4,10)(5,15)(6,16)(7,13)(8,14)(17,27)(18,28)(19,25)(20,26)(21,31)(22,32)(23,29)(24,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,7,3,5)(2,6,4,8)(9,15,11,13)(10,14,12,16)(17,23,19,21)(18,22,20,24)(25,31,27,29)(26,30,28,32), (2,6,7)(4,8,5)(10,14,15)(12,16,13)(18,22,23)(20,24,21)(26,30,31)(28,32,29)>;
G:=Group( (1,19)(2,20)(3,17)(4,18)(5,23)(6,24)(7,21)(8,22)(9,27)(10,28)(11,25)(12,26)(13,31)(14,32)(15,29)(16,30), (1,11)(2,12)(3,9)(4,10)(5,15)(6,16)(7,13)(8,14)(17,27)(18,28)(19,25)(20,26)(21,31)(22,32)(23,29)(24,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,7,3,5)(2,6,4,8)(9,15,11,13)(10,14,12,16)(17,23,19,21)(18,22,20,24)(25,31,27,29)(26,30,28,32), (2,6,7)(4,8,5)(10,14,15)(12,16,13)(18,22,23)(20,24,21)(26,30,31)(28,32,29) );
G=PermutationGroup([[(1,19),(2,20),(3,17),(4,18),(5,23),(6,24),(7,21),(8,22),(9,27),(10,28),(11,25),(12,26),(13,31),(14,32),(15,29),(16,30)], [(1,11),(2,12),(3,9),(4,10),(5,15),(6,16),(7,13),(8,14),(17,27),(18,28),(19,25),(20,26),(21,31),(22,32),(23,29),(24,30)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,7,3,5),(2,6,4,8),(9,15,11,13),(10,14,12,16),(17,23,19,21),(18,22,20,24),(25,31,27,29),(26,30,28,32)], [(2,6,7),(4,8,5),(10,14,15),(12,16,13),(18,22,23),(20,24,21),(26,30,31),(28,32,29)]])
C22×SL2(𝔽3) is a maximal subgroup of
C23.14S4 C23.15S4 C23.16S4 (C2×Q8)⋊C12 SL2(𝔽3)⋊5D4
Matrix representation of C22×SL2(𝔽3) ►in GL4(𝔽13) generated by
1 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 12 |
0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 3 | 4 |
0 | 0 | 4 | 10 |
9 | 0 | 0 | 0 |
0 | 9 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 10 | 9 |
G:=sub<GL(4,GF(13))| [1,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[12,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,12,0],[1,0,0,0,0,1,0,0,0,0,3,4,0,0,4,10],[9,0,0,0,0,9,0,0,0,0,1,10,0,0,0,9] >;
C22×SL2(𝔽3) in GAP, Magma, Sage, TeX
C_2^2\times {\rm SL}_2({\mathbb F}_3)
% in TeX
G:=Group("C2^2xSL(2,3)");
// GroupNames label
G:=SmallGroup(96,198);
// by ID
G=gap.SmallGroup(96,198);
# by ID
G:=PCGroup([6,-2,-2,-3,-2,2,-2,159,117,286,202,88]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^4=e^3=1,d^2=c^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=c^-1,e*c*e^-1=d,e*d*e^-1=c*d>;
// generators/relations
Export